Plasmonic gold and luminescent silicon nanoplatforms for multimode imaging of cancer cells.

نویسندگان

  • Folarin Erogbogbo
  • Xin Liu
  • Jasmine L May
  • Ashley Narain
  • Patrick Gladding
  • Mark T Swihart
  • Paras N Prasad
چکیده

The development of multimodal nanoparticle platforms is desirable for cancer nanotechnology applications. Creating single nanoplatforms with both plasmonic and photoluminescent optical properties has remained a challenge, because combining discrete entities each having one of these unique properties typically results in the attenuation of one of the desirable properties. Here, we overcome challenges associated with combining plasmonic gold with luminescent silicon nanocrystals for biological imaging applications by incorporating multiple silicon quantum dots into the core of a micelle and then depositing gold on the surface of the nanostructure. Within the newly developed nanoconstruct, the gold shell exhibits plasmonic light scattering properties useful for dark field imaging, while the silicon nanocrystals maintain their photoluminescence. The result is a nanoplatform with both plasmonic and luminescent properties in a useful form. Multimodal imaging of pancreatic cancer cells demonstrates overlap of luminescence from the silicon quantum dots with light scattering from the gold shell. This approach can be tailored to other formulations and address the challenge of fluorescence attenuation that is typically observed when quantum dots are combined with plasmonic materials. The usefulness of these particles may eventually extend beyond multimodal imaging to include photothermal treatment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis and Evaluation of Gold Nanoparticles/Nanorods to Use in Plasmonic Photothermal Therapy

Introduction: Photothermal therapy is a method of cancer treatment that plasmonic nanoparticles are used to convert infrared light into local heat. Due to the plasmonic properties of gold nanoparticles, this compound was used as a contrast agent. The aim of this study was to synthesize gold nanoparticles with different conjugations for photothermal therapy. Methods: This research was an experi...

متن کامل

Biocompatible magnetofluorescent probes: luminescent silicon quantum dots coupled with superparamagnetic iron(III) oxide.

Luminescent silicon quantum dots (SiQDs) are gaining momentum in bioimaging applications, based on their unique combination of optical properties and biocompatibility. Here, we report the development of a multimodal probe that combines the optical properties of silicon quantum dots with the superparamagnetic properties of iron oxide nanoparticles to create biocompatible magnetofluorescent nanop...

متن کامل

Evaluation of multifunctional targeted gold nanoparticles on X-ray attenuation in nasopharyngeal cancer cells by X- ray imaging

Introduction: Head-and-neck cancer is the sixth most common cancer worldwide with the number of cases consistently increasing in developing countries. Successful development of effective, safe and cost effective nanoprobes for head-and-neck cancer targeting imaging is a big challenge. This study is aimed to develop cysteamine-folate conjugated gold nanoparticles (F-Cys-AuNPs) a...

متن کامل

Targeted detection of the cancer cells using the anti-CD24 bio modified PEGylated gold nanoparticles: the application of CD24 as a vital cancer biomarker

Objective(s): The central role of molecular imaging modalities in cancer management is an undeniable fact that could help to diagnose cancer tumors in early stages. The main aim of this study is to prepare a novel targeted molecular imaging nanoprobe of CD24-PEGylated Au NPs to improve the ability of Computed tomography scanning (CT scan) outputs for both in vitro and in vivo detection of breas...

متن کامل

Iron-gold (Fe2O3@Au) core-shell nano-theranostic for magnetically targeted photothermal therapy under magnetic resonance imaging guidance

Introduction: Photothermal therapy (PTT) is a nanotechnology-assisted cancer hyperthermia approach in which the interaction between laser light and plasmonic nanoparticles generates a localized heating for thermoablation of the tumor. Recent efforts in the area of PTT follow two important aims: (i) exploitation of targeting strategies for preferential accumulation of plasmonic ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Integrative biology : quantitative biosciences from nano to macro

دوره 5 1  شماره 

صفحات  -

تاریخ انتشار 2013